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1 Summary

A technique for controlling complex unsteady high-speed flows was developed. Our approach
uses numerical solutions of the adjoint of the compressible flow equations to circumvent the
complexity of the flow and directly determine the sensitivity of a specified control objec-

tive to changes in actuation. Since this method requires a complete physical description of
a turbulent flow, which is only currently available from direct numerical simulations, the
immediate objective is not to develop a practical control scheme. Instead. the method's

utility is in its ability to study flow control in applications like jet noise reduction where a
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practical prediction capability is lacking. It provides working controls which can be gen-
eralized and at the same time provides unique full-fidelity simulation databases of a noisy
and its corresponding quieted flow, which can be compared to study the subtle mechanisms

of sound generation. The key result of the previous funding period was the development
of the adjoint-based formulation in two-dimensions and its (remarkably) successful demon-
stration on a two-dimensional mixing layer. That was the first time a non-trial-and-error
methodology successfully reduced noise from a free shear flow to a The summary of our
accomplishments of this funding period are:

We completed a detailed study of different types of control on our mixing layer model

. of the near-nozzle0•hear layers of a jet. Different types of flow- will be better con-
trolled by different actuations. For jets, fluidic (momentum) type actuators have
been demonstrated on full scale engines,' but more recently increasing attention is
being paid to plasma actuators.2 We considered thermal, momentum and mass-source
actuators. Within our formulation all worked with comparable effectiveness. For all,
it was demonstrated that the noise control results from a genuine change to the flow

as a source of sound, not any simple "anti-sound" mechanism.

We completed a study of the minimal modal degree-of-freedom content of the con-
trol identified for them to be effective. This is important for the design of practical

actuators.

" Having at the same time a loud and a corresponding quiet controlled flow afforded
a unique opportunity to study the mechanisms of the control. It was shown that
despite a 10dB reduction of the noise, the flow was superficially unchanged. Its mean
flow, turbulence statistics, and apparent large-scale structure were all superficially
indistinguishable before and after the application of successful controls. However,
decomposition of the flow into empirical eigenfunctions (also Proper Orthogonal De-
composition - POD modes) showed that the control lead to a subtle change in how the
large-scale structures advect downstream, which we explained with a simple model of
jet noise mechanisms.

" A formulation was derived in three dimensions for the adjoint equations and the entire

optimization framework.

" We simulated a turbulent mixing layer with specially designed techniques for setting
turbulent inflow conditions. We showed also that this flow has a broad-banded far-field
sound spectrum.

"* We made an initial demonstration of successful control in three dimensions.

2 Introduction

The ability to diagnose and control highly unsteady turbulent flows is, in many cases, ham-
pered by a lack of accurate models. Noise generation by a turbulent jet is a particularly
challenging example, with trial-and-error experimentation being the norm for design im-
provements despite over 50 years of study. The adjoint-based methods being developed in
this project circumvent the present lack of reliable design tools. We build on an existing
capability to compute turbulent jet noise from first principles 3 and an existing understand-
ing of how to extract useful sensitivity information from adjoint computations in turbulent
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flows. 4 For the first time, a full-physics description of jet noise is available, and is leveraged
heavily in this work.

Reduction of jet noise remains an elusive control objective. Certain nozzle geometry mod-
ifications are known to reduce noise, 5 and some of these even have acceptable losses. 6

Unfortunately. because of the lack of quantitative predictive tools for jet noise, their design
always entails some degree of trail-and-error interactions. Thus, it is never known if any
sort of optimum has been reached in their design. Presumably, if there were a quick and
reliable means of predicting jet noise, control theory could be applied to optimize nozzle
geometry with less need for expensive experiments. It would also be easier to investigate
active control of jet noise.

It is the nature of jet noise, and aerodynamic sound generation in general, that causes
the difficulty. Even for the apparently loud near-sonic jets on civilian aircraft, the noise
accounts for only a minuscule fraction of the flow's energy (< 10-4). There is currently not
even a phenomenological model for coupling the turbulence to its noise.

In a sense, the radiated acoustic energy comes from individual noise sources that do not
quite completely cancel one another, letting only a small amount of energy leak into the
far field as sound. In the zero Mach number limit, which has been used successfully in jets,
these source are quadruples, 7 so at finite sub-sonic Mach numbers the sources are often
said to have a quadrupole character. A related characterization is that individual turbulent
structure do not directly radiate because their wavenumber-frequency makeup is such that
they can only spawn evanescent pressure waves. It is a subtle aspect of the growth and
decay of turbulence structures, or their mutual interactions, that puts energy in components
with radiation capable phase velocities. In light of this, it is not surprising that expressions
relating near-field turbulence statistics to acoustic radiation are complicated and have not
lead to a completely satisfactory prediction capability.

Faced with the complexity of the aeroacoustics of free shear flows, jet noise in particular,
we have developed and applied an optimal control methodology. Since trail-and-error ex-
periments have shown modest reduction in noise, we want to determine what the the upper
limit of this reduction might be: How quiet can a flow be made given a particular set of
physical constraints? We focus on active controls since their generality should make them
more effective than passive controls. Another question concerns the relative effectiveness
of different types of actuation. Any actuation is a combination of mass, momentum, and
energy sources. Of these, it is not clear what type or types of actuations will be most
effective for noise reduction. Of course, practical considerations will need to be included
for any actual actuator design but the relative effectiveness of different types of actuation
should also be accounted for, which is not currently possible because it is unknown.

Once a flow has been quieted, as it can be with the algorithm we developed, two further
questions arise. The first concerns whether or not the noise reduction can be accomplished
by small perturbations so the control would be energy efficient. The second question simply
asks what changed? That is, can an effective control mechanism be deduced by comparing
the flow before and after it is controlled? To answer these questions, we need a method that
circumvents the complexity of the processes and automatically identifies effective controls.
We note, however, that since we are primarily interested in studying the mechanics of sound
generation, we are not yet concerned with the practical aspects of hardware implementation,
though practical constraints can be designed into our methods.
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3 Two Dimensional Mixing Layer: Summary Of Key Results

Models based on the large structures in a turbulent jet flow have a long history for jet noise.
It is well known that these structures share qualitative, and in some ways quantitative,
characteristics with the linear instabilities modes of slowly spreading free shear flows. This
similarity has inspired numerous efforts to model jet noise generation, or at least certain
aspects of it, with wave-packet sources. These are commonly linear instability modes but
relatively ad hoc wave packets have also been used with some success. 8- 14 In all these cases
the wave-packet models predict certain aspects of the observed radiated noise, but also
typically fail in some regard. They might predict the functional form of the directivity, for
example, without matching the measured coefficients, 8 or they might predict silent angles
in the directivity, which are not observed.s'12

One particularly troubling aspect of this approach is that the radiated noise can be tremen-
dously sensitive to the subtle details of the wave packet. Consider figure 1 from Freund, 15

which demonstrates that imperceptible changes to a one-dimensional wave-packet noise
source can cause order-of-magnitude changes to the noise. Other changes can alter the
directivity and so on. A notably quantitative success of wave packets is the successful
application of the Crighton & Huerret ° wave-packet by Colonius et al. 16 to a very accu-
rate direct numerical simulation of a harmonically excited two-dimensional mixing layer.
Presumably, it is the very regular character of this particular flow-instantaneously it has
a seemingly perfect single-streamwise-wavenumber wave-packet form-that facilitates the
quantitative agreement. In a turbulent flow, even though there is probably a linear insta-
bility mechanism underlying the turbulence, the details of the turbulence would alter any
underlying wave-packets sufficiently to affect its noise, disrupting cancellations and making
it louder. This disruption is thus inherently coupled to difficult-to-predict features of the
flow turbulence and is therefore challenging to model quantitatively.

If this perturbed wave-packet picture of jet turbulence is believed, then we can speculate
that a standard free-shear-flow might be in some sense close to a much quieter, more regular
wave-packet 'state'. The question is: Can the correct small perturbations make a nonlinearly
active free shear flow (crudely analogous to figures 1 b and d) slightly more regular and
thereby much quieter (as in figures 1 a and c)? The principle problem in assessing this
possibility is finding the substantially quieter state constrained by the complex nonlinear
dynamics of a free shear flow, assuming that such a state exists at all. To do this we
formulated the adjoint of the perturbed and linearized compressible flow equations in such
a way that its solution, when it is forced by an appropriate metric of the noise, provides
the sensitivity of the radiated sound to changes in control actuation. The full details of
the formulation are provided elsewhere. 17 With this sensitivity, it is a straightforward but
computationally intense task to optimize the actuation to find the perturbation we seek.
Since the adjoint formulation is built upon a linearization, the optimization of the nonlinear
flow-noise system must be undertaken iteratively.

Because of the expense of the computation and the number of iterations needed, we focus
our current effort on a two-dimensional mixing layer, which serves as a model for the near-
nozzle region of a jet. The free stream Mach numbers are 0.2 and 0.9. The target for
control is ff p'p' dsdt on a line Q extending the length of the computational domain as seen
in figure 2. At the inflow of the computation, the flow was exited with 8 randomly selected
frequencies between 0 and 2fo, where f, is the linear instability prediction for the locally
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Figure 1: Demonstration of wave packet sensitivity to small perturbations. We assume a one-dimensional
source S(x) in a three-dimensional homogeneous medium 9 whose sound is computed via ptt + a2Ap =

S(x)6(y). Shown are (a) an unperturbed source with S(x) = e-_, 2 cos(wt - kx) with radiated sound (c);

and (b) S(x) = e-" 2 cos(wt - r,(x)x), where tn(x) = k + 0.05 tanh(x), and its radiated sound (d). The
radiation increases by roughly a factor of ten with this perturbation that is barely visible in (b). Contour
levels in (c) and (d) are the same and w/k = 0.5a, as appropriate for a near-sonic jet.

most amplified instability mode. For contrast, we also simulated and attempted to control
the same flow excited by 2fo, f, and 6 sub-harmonics, which is similar to the definitively
wave-packet flow studied by Colonius et al. 16 In this case, we expect regular vortex roll-ups
and pairings and sources much closer to the idealized traveling waves discussed above.

Though our formulation can optimize a broad class of controls, to meet our current objec-
tives we seek the most general control possible and optimize a smooth forcing function with
compact support in C (see figure 2). Each point of its discrete representation is treated as
an independent control parameter. The control is remarkably successful, reducing the noise
by up to 11dB, which it does with very little energy input, 17 requiring less than 0.01% of
the fluctuation kinetic energy in the shear layers. Direct numerical tests confirm that the
mechanism of the control is a change to the flow as a source of sound and not so-called
anti-sound acoustic cancellations. Optimizing an actual anti-sound source is found to be
marginally successful but only on Q2 in figure 2. The flow control is successful both on Q
and beyond it and even in the opposite direction in the high-speed stream.

Despite the dramatic noise reduction effected by the control, the flow itself is remarkably
unchanged. The mean-flow spreading rates, near-field spectra, second-order fluctuation
statistics, and flow visualizations (e.g. figure 3) all show only minor changes to the flow
before and after the control is applied. This confirms our notion that a random nonlinearly
active flow can be perturbed slightly to a close-by quiet state, just as the wave-packet
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Figure 2: Mixing layer control schematic.

(a)

(b)

Figure 3: Vorticity visualization of the flow before (a) and after (b) control. The control reduces the noise
by over 10dB in this case.

models discussed above would suggest. In contrast, the noise of the harmonically excited

flow, which presumably is already in a quiet condition given its regular character, is reduced

by less than 0.7dB by the same control scheme. Interestingly, its noise level matches closely

that of the controlled randomly excited flow.17

Despite the superficial similarity of the before and after pictures and fluctuation statistic,

the final question we wish to address is whether a more regular underlying wave-packet-like

order can be deduced in the controlled flow. This is important for confirming that the

wave models whose properties motivated this discussion have some merit in qualitatively

describing the mechanism of the control. We investigate this by decomposing the flow into

empirical eigenfunctions (POD modes), which we use as surrogates for Fourier modes in

the inhomogeneous streamwise direction. Quiet wave-packet sources are expected to have a

form with predominantly smooth downstream advection at a subsonic speed. We anticipate

forms such as a1 (t) cos kx + a 2 (t) sin kx multiplied by some slowly varying envelope function.

For smooth advection, the coefficients a, and a2 would trace circular paths in their phase

plane. This behavior is, of course, observed in the harmonically excited flow.

Figure 4 shows the two most energetic empirical eigenmodes based on a p' L 2 -norm. Com-

paring the before (figure 4 a) and after (figure 4 b) cases we see that the energy has organized
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Figure 4: The two most energetic empirical eigenfunction (POD) modes for the pressure field: (a) before
and (b) after control.

itself into modes that do indeed fit together much like sines and cosines and would therefore
be capable of advecting the structures smoothly downstream. The ai coefficients of these
modes, which reconstruct the flow pressure as

N

p(x, t) = (t) (x),(1)
i=1

where Oi is the i-th pressure eigenfunction, do indeed now trace a more circular trajectory in

the a,-a 2 phase plane, as seen in figure 5. Eigenfunctions for other flow variable constructed
with a kinetic energy norm show similar behavior.17  It is also noted elsewhere1 7 that
the control leads to nearly silent angles at particular radiated frequencies, which are also
predicted by some wave-packet models. 8,12

We conclude that there has indeed been a subtle ordering induced by the control, which
seems to exploit the strong sensitivity of the noise to subtle changes in the form of the

source as anticipated by the wave-packet models. Our nonlinearly active randomly excited
mixing layer is perturbed only slightly into a nearby much quieter state. Whether or not this

picture holds for a three-dimensional turbulent flow is the subject of on-going investigations.

4 Two-dimensional Mixing Layer: Full Details and Results

4.1 Introduction

The generation of sound by a subsonic jet has resisted any simple mechanistic description.
While manipulations of the flow equations can provide a hierarchy of theoretical noise-
source definitions,' 8 the details of the process are masked in the complexity of the flow
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Figure 5: The phase map of coefficients of the most energetic empirical eigenfunction modes of the pressure
field: (a) before control: (b) after control.

turbulence. Even then there is the additional complication that most of the turbulence
energy does not directly couple to the sound field: it is the subtle growth and decay of
the energetic turbulence structures and their interactions that puts energy into radiation-
capable noise-source components,19' 2° however they are defined within a particular model.
For example, in the simplest model, 7 where propagation is by the stationary-medium scalar
wave equation, a mode must have a supersonic phase velocity to radiate. This condition
is satisfied by only a small portion of the fluctuation energy in a subsonic jet. Statistical
descriptions of theoretical noise sources are complex, and models for them currently lack
the fidelity for reliable predictive acoustic modeling of general flows. Even direct numerical
simulations, 3 ,16 though they have been useful for diagnosing aspects of free-shear-flow noise
generation and its modeling, have neither illuminated any generally applicable simplifying
principles nor pointed to any clear means of noise reduction.

Faced with this, we devised an approach to study free-shear-flow noise reduction directly.
Given a numerical solution of the compressible flow equations, we solve the adjoint of the
linearized perturbed equations backward in time provide the sensitivity of the noise, as
defined quantitatively by an appropriate metric, to changes in control actuation. This
sensitivity is used to iteratively improve controls for the selected noise-reduction objective.
The scheme is formulated mathematically in section 4.3.

This iterative approach is, however, computationally intense, requiring numerous numerical
solutions of the adjoint and flow equation to optimize the controls. For this reason we con-
sidered a two-dimensional mixing-layer model of the near-nozzle region of a jet. The details
of the mixing layer and its numerical simulation are provided in the following section 4.2.
This flow has several of the salient features of a jet, but can be computed at a fraction
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Figure 6: Mixing layer control schematic.

of the expense of even a low-Reynolds-number turbulent jet. 3 It is also easier to interpret
certain results for this simplified flow model, though care must be taken in generalizing the
specific results to three-dimensional, turbulent flows because of their additional complexity.

Clearly, such an iterative scheme is not designed for implementation in hardware, since the
iterative process itself requires full knowledge of the unsteady flow field. Instead, we use it
to probe the mechanisms of free-shear-flow noise, particularly the noise due to the quasi-
two-dimensional (instability wave-like) flow structures in a turbulent flow, and perhaps most
importantly to gage how much noise reduction can be accomplished with nozzle controls.
(How quiet can it be? What type of control is required?) This study is undertaken in
section 4.4, which contains the bulk of this paper's results. Of particular interest are the
changes induced by the control. Once a mixing layer's noise is significantly reduced, and
it is shown that this results via a genuine change in the flow as a source of sound, we can
compare the original noisy flow and its quieted counterpart to illuminate noise mechanisms
in a way that has not before been possible.

4.2 The two-dimensional mixing layer

4.2.1 Flow parameters

The mixing layer simulated is shown schematically in figure 6. The velocity difference across
the layer is AU, with which we can defined the inflow vorticity thickness,

AU
Idu/dylmax' (2)

of the initial hyperbolic tangent velocity profile for use as a length scale. This inflow condi-
tion simplifies the flow relative to its experimental counterpart by removing any interaction
with a splitter plate (or nozzle lip), which can change the character of the acoustic radiation.
The flow Reynolds number is Re, =_ p.AUJ,/p = 500 with pt the constant viscosity of
the fluid and pa, the ambient density, which is the same in both streams. We also assume
zero bulk viscosity. The Mach numbers of the free streams are M1 = Ui/am = 0.9 and
M2 = U2/am = 0.2, where ac is the ambient sound speed. We assume a perfect gas with
constant Prandtl number Pr =_ Cpl/k = 0.7.

The flow was simulated in a domain extending 100J, in x and out to ±805, in y, as shown

11



Source type (f , f2, f3 , f4 ) f2 . ,f, f4 ) (a ,a* )

'.Mass' (1, 0, 0,To/f) ( 0. 0. , 0 ) (0 0) p'- p*To/-/
x body force (0, 1, , u ) ( 0,O 0, u') (p*, 0 u*+up*
ybodyforce (0, , 1, v ) ( 0.. 0, v') ( O,p* v*-vp*
Int. energy (0, 0,0,1) ( 0. 0 0, 0) (0, 0 ) p

awith zero velocity and temperature To - 1/(y - 1)

Table 1: Vectors used for different controls: F [fl f2 f 3 f4 T defined in (4); F' = [fl' f2 f3 f]'T defined
in (15); A = [ 0 a; a; 0 ]T defined in (20); and the gradient g(x,t) defined in (13).

in figure 6. The line Q at y = -706w and extending between x = 0 and x = 100Jw
was targeted by our control for noise reduction. This one-sided noise reduction objective
is inspired by jet noise reduction, which is most important in the downward toward-the-
ground direction, though the formulation admits considerable flexibility in selecting Q. It
is possible to select an Q in the far field, but computing far-field sound and propagating the
adjoint solution back into the meshed computational domain would both introduce errors
and add considerable complexity. The computational savings of such an approach would be
small because most mesh points are in the vortical region of the flow. The controls discussed
subsequently were applied only in the small square region labeled C in the figure, covering
x/3J G [1, 7] and y/16 e [-3,3]. Since C does not span the entire width of the mixing layer
that has significant vorticity (see figure 6), we do not anticipate laminarization to be an
option for our control.

4.2.2 Governing flow equations

The compressible viscous flow equations were formulated in Cartesian coordinates and are
provided in full in appendix A. Here, the equations are presented only in operator form.
The compressible flow equations are thus

M(q) = 0, (3)

where q is a vector of the primitive flow variables q = [p u v piT.

The control is implemented into the equations as a general source term O(x, t) with compact
support in C (see figure 6):

K(q) = F¢(x, t), (4)

where the vector F puts the control's action into the different equations that make up KV
(see appendix A) and enforces certain consistencies for the control forcing. For example,
it is designed so that momentum forcing appears consistently in the momentum equation
and in the total energy equation, where it acts on the kinetic energy. Specific F vectors
for the flow equations in appendix A are listed in table 1 for the different types of control
considered.

4.2.3 Numerical methods

The flow equations were solved numerically and without any modeling approximations. A
fourth-order Runge-Kutta algorithm was used to advance the solution in time. Spatial
derivatives were computed with a sixth-order compact finite-difference scheme 21 in the
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x direction and a fourth-order seven-point explicit coefficient-optimized finite-difference
scheme22 in the y direction. The explicit scheme in y facilitated domain decomposition for
solution on parallel computer systems.

In our computation, the equations were discretized with 960 x 640 mesh points in the x
and y directions, respectively. The mesh was stretched in y to increase the resolution in
the shear layer. It had a minimum spacing !ymin = 0.146, at y = 0, a maximum spacing
Aymax = 0.96W at y = ±806w, and a maximum stretching rate I(Ayi+1 - AYi)/Ayilmax.
1.6% at y ± ±55J,. Beyond the physical domain (see section 4.2.1), the mesh was stretched
continuously and extended 606, upstream and downstream of the physical domain in x and
206, beyond its top and the bottom in y. In these zones, damping with strength increasing
away from the physical domain was added to the equations in order to mimic a radiation
condition. 23 Specifically, the damping terms appear in the governing equations simply as

.M(q) = -ý(q - qtarget), (5)

where the damping coefficient ý is zero in the physical domain and varies quadratically from
0 to 0.2a•/6J between the physical and the computational domain boundaries. By the
time all fluctuations reached the actual boundaries of the computational domain, they were
reduced to such a negligible level that standard one-dimensional characteristic boundary
conditions adequately absorbed outgoing perturbations.

4.2.4 Inflow excitation

To make the mixing layer well defined and reproducible and to avoid any spurious auto ex-
citation associated with the numerical discretization, we explicitly excited our mixing layer.
Another objective of this excitation was to provide a relatively high amplitude disturbance
level at the inflow to properly challenge the controller.

Linear instability analysis predicts that the most unstable mode of the corresponding in-
compressible mixing layer, with the assumption of parallel flow, has Strouhal number
St 0 = fo6h/(4Uc) ; 0.032,24 where U, = (U, + U2 )/2 and fo is the mode's frequency.
Thus, frequency fo provides an estimate of the fundamental frequency of our compressible
mixing layer, since it is not very sensitive to the present compressibility level.25 Numerical
experimentation confirmed that our mixing layer does respond most strongly to excitations
with frequencies near fo.

We excited the flow at a total of eight frequencies,

fi = o+ i = 1, 2,..., 8, (6)

where a(') are uniformly distributed random numbers such that a(') C (-0.5,0.5). In
section 4.4.1, we confirm that the noise and its controllability are insensitive to the particular
random numbers defining the excitation. For comparison, we also simulated and controlled a
mixing layer excited with fo, 2fo, and 6 subharmonics of fo. This excitation, which is similar
to that used by,16 produces a regular roll-up and pairing of vorticies (see section 4.4.6).

A special procedure was designed to reduce the direct effect of the excitation on the sound
field. We defined

8

=23sin U t + q sin + 3 (7)
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where '0o = 0.008p.a2/56 and x0 -10Jw. The ox and 0. are random phases c [0,27w)
and are constant for the entire simulation. The excitation was then included as a body
force

Fe (o -,(8)F O\y 0xx

which is solenoidal and thus relatively quiet. Our selected xo puts the excitation upstream of
the physically realistic portion of the computation. The ý in (5) has maximum value of only
0.0125a,/,1 in this region, which does counteract the excitation but does not significantly
interfere with its objectives.

This approach can generate disturbances at the physical domain boundary that are higher
amplitude than could be accurately prescribed locally at the inflow boundary without gen-
erating spurious sound. The average turbulence intensity at the center of the control region
(x = 4Jw, y = 0) close to the inflow was already 70% of its peak value further downstream.
The excitation Fe appears in the momentum equations, but has support only for x < 0,
which is the beginning of what we consider the physical domain. Therefore, for clarity we
omit it from subsequent analysis. Its purpose is solely to provide an inflow condition. Our
controller, of course, has no direct knowledge of this excitation. Because the base flow is a
slowly spreading shear layer, the noise from excitation is not expected to be exactly zero,
but both visualizations and the eventual success of the control show that it is negligible
relative to the physical noise from the mixing layer.

4.2.5 Simulation procedure

To avoid initial transients, we first simulated the flow for time 5885,/AU, which is approx-
imately 59 fundamental vortex roll-up periods according to our estimated fo. This process
took 10 500 numerical time steps with At = 0.0563•/AU. Then the control was applied
for 437.55•/AU time units, which is about 44 fundamental roll-up periods. Figure 7 (a)
shows the flow and sound fields, which include data in two regions: the direct numerical
simulation data (inner area) and a far-field acoustic extrapolation beyond the simulation
domain, which was computed as by.3 It is seen in figure 7 (b) that the target line Q at
y = -70J, is indeed in the far acoustic field, as defined for this purpose by a 1/r intensity
decay. This supports our approach of using the pressure data on Q to control the far-field
sound.

4.3 Control formulation

4.3.1 The control and its objective

The control objective is to make the mixing layer as quiet as possible with local actuation
near the inflow, which will allow us to study noise mechanisms effectively and establish
an empirical lower bound on the mixing layer's noise. Thus, it is desirable to have the
most general control possible, which in our simulation methodology corresponds to treating
each space-time point of the discrete representation of t(x, t) in (4) as an independent
control parameter. In the reported results, the function 0 is discretized over a 36 x 45 point
subregion of the simulation mesh in C for 7812 time steps, giving approximately 107 control
parameters to be optimized. (The much smaller number of control dimensions actually
necessary for control is investigated in section 4.4.5.)
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The control's specific objective is to reduce noise as defined by the cost functional

I(¢ [P f f ((x., t),x, t) -i !5(X) ]2 dxdt, (9)

where to and t, are the start and end times of the control period, p is the local pressure,
which can be viewed to depend upon the control O(x, t), and p, is the spatially dependent
but time averaged pressure before control is applied. This mean pressure is nearly uniform
on Q with f5o - poo < 0.0017p,, where poo is the nominal ambient pressure, but since this
variation is comparable with the uncontrolled acoustic pressure fluctuations (; 0.003p.o),
this difference of the mean pressure from the pressure at infinity is important for properly
defining the sound. The mean pressure of the controlled cases, P, is not constrained, and
in principle can drift due to the control, though any such drift would be penalized by
increasing J. We observe, however, that the difference in p from p, on Q is less than 3% of
the maximum uncontrolled acoustic pressure fluctuations, so J(0) in (9) effectively remains
acoustic when control is applied.

.4.3.2 Sensitivity

To determine the sensitivity of the cost functional J to small modifications of the control
0, we consider the perturbation J' that results from an arbitrary perturbation 0' to the
control 0. This perturbation J' is defined as a differential of the cost functional J with
respect to O(x, t) in the direction 0':

-lim-J(0 + = - ii 2[p (, x, t) - P5o(x)]p'(x, 0, 0') dxdt. (10)

The limit that defines p' in the integrand is exactly analogous to that which defines J'.
In forming the rightmost term in (10) from (9), the derivative operation can be viewed as
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commuting with the integration operation. With the differential of the functional J defined
in (10), the gradient g(o) of the functional j for any direction 0' can be defined implicitly
as

'= g(4)' dxdt. (11)

The space integration in (11) is only over C, the support of 0'. Together (10) and (11)
provide an implicit formula for g,

I g dxdt 2[p(0, x, t) - Pi,(x)]p'(x, ¢, ¢') dxdt, (12)

which in principle could be solved for the best 0' if all p' were known for all potential ¢'
perturbations, but to solve for the n space-time components of 05, we would need to solve
the flow at least n times for n linearly independent perturbations. For large n (107 in our
case), this option is impractical. In the next section, we use an adjoint formulation to solve
for g directly, which can then be used to update the control by

0new = 0old + rg(oold), (13)

where r is a generalized distance in ¢ coordinates determined iteratively to minimize
,7(0,ew) in the g direction.

4.3.3 Adjoint-based optimization: formulation

Our formulation is similar to that of4 for incompressible flow and we use similar notation.
As in (10), a differential is applied to all flow variables q, to define q' = [p' u' v' p']T. We
take q' to be the still unknown perturbation to a solution q of the flow equations (4) due to
a control perturbation 0', though this specific designation is not assumed by the differential
definition of q'. Mathematically, this means that

KI(q + q') = F(q + q')(0 + 0'), (14)

where the notation for the term on the right side indicates that the vector F depends on
q + q' and multiplies the scalar 0 + 0b. Linearizing (14) in q', or equivalently taking the
differential of the governing equation (4), yields

Af'(q)q' = F'¢ + FO'. (15)

The operation Ar'(q)q' is linear in q', though AJ(q) is itself a nonlinear function of q. It is
convenient for the subsequent development to define

AM'(q, ¢)q' = .A'(q)q' - F' = F¢', (16)

thus isolating the control perturbation on the right side of the equation. The F' correspond-
ing to the specific controls we consider are listed in table 1.

With an inner product defined

(c, d) c . d dxdt f cn(x, t)dn(x, t) dxdt, (17)
62 n
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the adjoint of M'(q) is obtained by integration by parts:

(.A/t'(q)q', q*) = -(q', .A4* (q)q') + b. (18)

where b includes the space and time boundary terms (see equation 21 below) and

q* =[p* u* v* v* p*T (19)

is introduced as the adjoint field. The adjoint operator MA* includes two parts:

A4M*(q)q* = Ag*(q)q* + A*(q*)¢. (20)

The term A*(q*) arises from F' in (16) and is nonzero only for certain cases, as indicated

in table 1. The term A/ *(q)q* is derived from the flow equations (see appendix B) and is

the same for all controls considered.

The boundary term b in (18) is
tf ti ffY=+00 f• tt

b I= " (B. q') . q* dtdy + (By q'). q* dtdx + (Bt q') . q* dx, (21)
At0 R2-O to

where the B factors are 4 x 4 matrices. This boundary term b can be eliminated by choos-

ing appropriate boundary and initial conditions for the adjoint problem. Mathematically,

causality insures that the first two integrals are zero for the finite time interval considered

here. However, since the physical domain of the computation was necessarily finite, an

effectively equivalent radiation-like condition was enforced at the numerical boundary. This

condition was implemented in practice as in the flow solution with a combination of char-

acteristic boundary conditions and an absorbing boundary zone. Causality also eliminates

the time boundary term at the initial time t = to in the third integral: there can be no

perturbation to the flow (i.e. q' = 0) due to the control before the control is applied. The

condition at the end time t = tj can be eliminated by simply starting with q* = 0 at t = tj

and solving the adjoint system backward in time.

We can now choose a source term F* for our adjoint system,

MA*(q)q* = F*, (22)

so that the adjoint solution provides the gradient g in (13). We start by substituting (16)

and (22) into (18) with b = 0 as discussed to show that

(F¢', q*) = -(q', F*). (23)

Comparing (23) with (12), we would like

-(q', F*) = tlj 2[p(, x, t) - p,(x)]p'(x, ¢, 0') dxdt, (24)
.to J

so that

(Fo', q*) = g (0)0' dxdt. (25)

The adjoint source term F* that gives (24) from (17) is

F* = [o 0 0 -2(p- 1o)fj6(x-xo)dxo], (26)
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and by (25)
g(¢) = F.- q*, (27)

where, in practice, q* is known from the numerical solution of the adjoint system and F is
case dependent and defined in table 1. With g(o), we now have the generalized direction
in which to change 0 to reduce U7 for use in a gradient-based optimization procedure.

4.3.4 Adjoint-based optimization: numerical implementation

The adjoint equations are solved on the same mesh and by the same methods used to solve
the flow equations. The 6-function in (26) is distributed to the computational mesh by

Gaussian distribution function e-Y+706) /C4Ay2 ), where Ay is the local mesh spacing.
Thus, our smeared out approximation to the 3-function has width Z 2.76, which is much
less than the wavelength (> 14J,) of any significant radiated sound waves. This was proven
to be effective in noise cancellation tests. 17

For the control update, the Polak-Ribiere variant of the conjugate gradient algorithm is used
with Brent's line minimization. 26 Each line minimization typically required approximately
10 flow solutions and 10 adjoint solutions. One entire line-minimization procedure, which
accomplishes the step along one conjugate gradient, is designated as one iteration in the
following, so the number of field solutions can be estimated as z 20 x (# iterations), but this
approximate number is, of course, sensitive to the local shape of J(0). All optimizations
were started from a 0 = 0 condition, which may be responsible for the particular optimized

conditions found by the control because standard gradient descent searches can only find
local minima. Since the success of our control is sufficient to study noise mechanisms of
interest, we have not investigated this possibility.

As shown in section 4.3.3, the entire flow-field solution needs to be saved in order to solve
the adjoint equations. To save memory and minimize data input and output operations,
we saved the flow solutions only at every other point in space and time and interpolated
using third-order polynomials in space and linear interpolation in time. No differences
were noted between test cases computed used the full fields and the interpolated fields. The
optimizations presented in this paper each required approximately 20,000 processor-hours of
computation on an IBM SP3, usually using 80 processors and requiring about 30 gigabytes
of memory.

4.3.5 Adjoint solution

The evolution of the adjoint pressure p* is visualized in figure 8. It is this quantity that
provides the gradient information g to update the internal-energy control and is a factor in
all the types of control studied (see table 1). Since the flow equations are self-adjoint in the
acoustic limit, the adjoint pressure starts out as an adjoint sound wave, excited along Q by
the pressure as specified in (26). When this wave encounters the mixing layer, it excites
disturbances that convect upstream in the shear layer in a way similar (but time reversed) to
the motion of the vortex structures of the flow field, and with approximately the same speed
as the structure convective Mach number, M, = 0.55. These disturbances eventually reach
C, where the adjoint solution provides the gradient g to update ¢ according to (27). These
observations suggest that the effect of the control follows the same track but in reverse from
C to the target line Q. They also suggest that the control mechanism is via the instabilities
and flow structures in the mixing layer, and not so-called anti-sound acoustic cancellations,
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an issue that is revisited in detail in section 4.4.2. Given this qualitative behavior of the
adjoint, we can express the expected mechanism of noise control as follows: (1) the control
interacts with the flow, (2) this interaction alters (slightly, as we shall see) the instabilities
in the flow, and (3) the modified flow is quieter. This interpretation will be. strengthened
quantitatively in section 4.4.

4.3.6 Price term

It should be noted that the cost J in (9) does not penalize the control effort. A term to do
this was intentionally omitted since our primary objective is to study the effect of the control
on the flow and its noise mechanism, not to seek any mathematically formal optimum. Such
an objective would probably require a price term added to (9) that penalizes the control
effort:

7H(0) = ,(0) + c. jj dxdt. (28)

The gradient to reduce H is then

g(o) = IF.- q* + 2c . (29)

Numerical results for this formulation are provided by.17 Though the control effectiveness
is, of course, reduced for large enough cw, all of the following conclusions are unchanged by
the price term. Pertinent observations on the price term's effect are noted in the following.
In section 4.4.3, we will briefly discuss its effect on the spectrum of the control and in
section 4.4.4 we will mention that it is responsible for increasing the streamwise integral
length scale of the control.

4.4 Results

4.4.1 Sound reduction

Figure 9 shows the reduction of J by different types of control. To make this plot, we
increased the starting point to in the cost function (9) by the acoustic travel time from
C to the nearest point on Q. This approximation provides a lower bound on the time at
which the control will be effective on Q. Before this time, J not reducible from C, but for a
period even after this adjusted to, the sound on Q is not fully controllable for two reasons:
(1) the control's effect can only reach the closest point on Q, and (2) the rate at which the
control's effect travels within the mixing layer is slower than the sound speed. In the layer,
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control for the same flow but with different random number excitation in (6) and (7).

it is expected to travel at approximately the structure convective Mach number, Mc z 0.55,
as suggested by the adjoint solution behavior seen in section 4.3.5. With this definition,
all controls reduced the noise on the target line more than 60%, with the internal-energy
control showing a 92% (11 dB) sound reduction. A case with the mixing layer excited by a
different set of random numbers a(') is also shown in this figure to demonstrate insensitivity
to the specifics of the artificial random excitation.

We also tried to maximize controllability by combining all four types of control simultane-
ously. In this case, the control space is 4 times larger than the original one, so we generalize
the control to be ¢•(x, t) for i = 1, 2, 3, 4 and use corresponding Fj to represent each of the
F vectors in table 1, so (4) becomes

4

AJ(q) •Fi i(x, t). (30)

The corresponding cost-function reduction is also shown in figure 9. It is decreased more
slowly for the selected optimization parameters than, say, the internal-energy control only,
but eventually it approaches about the same control effectiveness. (No attempt was made
here or throughout to attach any particular significance to the rate of convergence.) Since
the all-terms control offered no clear benefit, we do not discuss it in the rest of this paper
and study the four single-equation control types separately.

The sound further from the mixing layer has, of course, been reduced as well, mostly in,
but not limited to, the sideline direction targeted by the selected Q. Figure 10 shows
the initial and controlled directivity on a circular arc centered at x = 50 6j and y = 0
with radius R = 3006,. The greatest reduction is in the acoustic shadow of Q, between
a = 540 and 126'. For smaller and larger a, the control's effectiveness is diminished, though
the noise is still reduced. Intensity at angles a,/3 < 400 and > 1400 were not computed
because they were determined by testing with known sources to be inaccurate in the far
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field. Surprisingly, the noise is reduced at all angles, even in the opposite direction to
that targeted by our choice of Q. This overall reduction is inconsistent with any simple
anti-sound noise cancellation mechanisms, which is investigated in detail next.

4.4.2 Anti-sound?

Before proceeding to investigate the effects of the control on the flow, it is important to
establish quantitatively that the noise reduction is indeed by a change in the flow as a source

of sound and not an anti-sound acoustic cancellation with 0 in C providing the canceling
acoustic waves. It was already suggested in section 4.3.5 that since adjoint instability waves
dominate the gradient information in C. the control mechanism should be linked to the
hydrodynamics.

To demonstrate further that our control is not by anti-sound and is, in fact, far superior to

what could be accomplished with anti-sound, we designed the numerical experiment shown
in figure 11 (a). Here, C is moved away from the shear layer such that it is now defined by
x/6• E [1, 7 and y/J, E [-21, -15]. The adjoint instability wave never reaches this control

region, so control should be principally by acoustic cancellation. Only the internal-energy
source control, which can be an efficient monopole-like sound source, is presented here for
demonstration purposes. After 12 iterations, a 40% reduction is observed (figure 11 b),
which is not surprising because anti-sound is known to be effective locally, though it is also
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Figure 12: Plots (a) and (b) show sound directivity: without control - and with internal energy anti-
sound control ---- , with ce and 3 defined in figure 10. (c) Sound intensity on the line x = 946: without
control -- , with anti-sound control ---- , and with internal energy control in the shear layer ------

known to increase the sound elsewhere. Figures 12 (a) and (b) show the sound directivity
of this case. The anti-sound control case is actually louder than the case without control in
most directions. Even for the area in the acoustic shadow of £2, there is no far-field sound
reduction. Figure 12 (c) suggests that the non-collocated flow and control noise sources
produce local cancellation on £2 but not beyond. Clearly, the flow control is more effective
than would seem possible for just anti-sound, though we can not rule out the possibility
that an anti-sound mechanism might aid it. We saw in figure 10 that the control is not
as successful in the far field as on Q2, which suggests that the noise reduction on Q2 might
indeed include some anti-sound component.

.4.4.3 Spectra

There are four important spectra in our controlled flow. The first is of our randomized
excitation based on the estimated fundamental frequency fo, as described in section 4.2.4.
Unless otherwise noted, the particular random numbers used gave excitation frequencies
0.3 6 fo, 0.40fo, 0.69fo, 0. 9 9fo, 1.28fo, 1.57fo, 1.8 6 fo, and 1.9 0fo. The second is the spectrum
of the optimized control; the third is the near-field spectrum of the mixing layer before and
after control is applied; and the fourth is the spectrum of radiated sound before and after
control. Figure 13 shows all these spectra.
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At the center of C, just downstream of the random excitation, the dominant frequency is
near fo (see the 'a' curves in the figure), apparently a direct response to the randomly
selected 0.99fo excitation. The control is seen to have an imperceptible effect upon the
pressure spectra in C, showing its weak effect on the hydrodynamics. Downstream, dominant
frequencies are lower as expected, and more sensitive to the control as seen in the (b) curves,
though the modest changes observed do not suggest any fundamental change to the flow. It
is also noteworthy that the near-field spectrum at x =o75& is dominated by frequencies that
acre significantly lower than the excitation frequencies, suggesting that nonlinear interactions
axe responsible for their character.

The optimized control (labeled d in the figure) has energy over a wide range of frequencies,
not just near the sound frequencies it is designed to control. This observation suggests that
the control works through the nonlinear dynamics in the mixing layer, not by simply exciting
a linear instability that somehow cancels the physical noise, for example. Adding a price
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term to the cost functional, as discussed in section 4.3.6, reduced the control's amplitude
at all frequencies, suggesting that they are all important.

The far-field noise spectra are significantly changed by the control. Interestingly, all controls
seem to affect spectra in about the same way, reducing mostly a particularly loud peak at
f z 0.159fo. This peak corresponds to neither a spectral peak in the near-field pressure
nor a clear spectral peak in the optimized control. The changes to the complete far-field
noise spectrum by different controls are more clearly represented in figure 14. The effect of
all controls is to reduce the noise of lower frequencies, which contain most of the acoustic
energy, with greater reduction noted closer to the downstream axis. We also see, however,
that more high-frequency noise is radiated by the controlled cases. The internal-energy
control caused the greatest increase in high frequencies, though it also reduced the overall
noise the most.

The apparent success of the controls at some sound frequencies but not others is investigated
further in figure 15, which shows directivities in narrow frequency bands for all cases. We
see again that the sound is most reduced near the frequency 0.159fo, which is the loudest
in the uncontrolled case. It is also seen in figures 15 (b) through (d) that the controls are
extremely successful at certain angles so that relatively silent angles are formed, suggesting
some higher degree of cancellation in the sound source. A similar angle of extinction has been
predicted by' for the sound produced by the amplification and decay of instability waves in
the shear layers of a jet, and was observed experimentally 27 in a round jet experiment and
in simulations of regularly forced two-dimensional 16 and axisymmetric28 free shear flows.
In all these cases, the flows were excited with a single-frequency or several harmonics.
Our randomly excited flow shows no such angles of extinction, and it is well known that
turbulent jets do not either. This is the first indication of several that we will investigate in
the remainder of the paper that the control has induced a subtle ordering, which, at least
as far as acoustics are concerned, shares characteristics with idealized or regularly forced
flows.

We can make a preliminary assessment of this suggested similarity by comparing the control
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of the randomly excited mixing layer to that of the corresponding harmonically excited
mixing layer discussed in section 4.2.4. In this case, the noise is not reduced significantly
by the control (figure 16). More remarkably, its level nearly matches the noise control limit
observed in the randomly excited case. Increasing the amplitude of the harmonic excitation
increases the sound level somewhat but does not increase the effectiveness of our control
scheme. By the same reasoning that ordering reduces sound, taking a(W = 0 in (6) should
also lead to a quieter flow. Indeed, the initial J in this case falls half way between the
random a(') case and the harmonically excited case. These observations suggests that the
harmonically excited flow is pathologically quiet and that it might, in some sense, be near
some lower bound on the noise from this type of unsteady free shear flow, though this is
beyond the capabilities of our formulation to prove. Further discussion of these similarities
is in section 4.4.6.

4.4.4 The optimized control

Figure 17 shows snapshots of the 0 in C for various controls at the same time. The apparent
structures we see in ¢ can be shown with space-time correlations to advect at the flow's
convection speed, though the integral length scale of the control is shorter than the flow.
It is also noteworthy that the internal-energy control has a somewhat longer streamwise
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indicates 0 < -0.001 in (a) through (c). These limits are ±0.01 in (d).

correlation length scale than the other controls.17 If a price term is added to the cost
functional, as discussed in section 4.3.6, the streamwise correlation of the control is seen to

increase somewhat, 17 which suggests that the more important components of the control

are more downstream persistent.

The power needed by the controls is remarkably small. To show this, a relative power

function 77(t) can be defined as a ratio of the control's power to the turbulence kinetic energy

flux through a vertical line £ at the downstream edge of C (x/6J = 7, -80 < y/jw < 80).

The instantaneous flux is

f= j Ek(xo, y, t)u(xo, y, t) dy, (31)

with 1
Ek = 2p[(u -. )2 + (v -_ j)2], (32)

so relative power ri for the different cases are defined as

71p(t) = 1 fOp(x, y, t)To/1y dx, (33)

77t = j f u(X, y, t)u(x, y, t) dx, (34)

77,(t) = - (Xy,0V (Xyt0 dx, (35)
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17pl 1 l7 [ I77v1 [7e1
Maximum 2.25 x 10-2 5.13 x 10-3 1.90 x 10-4 2.27 x 10-'
Average 1.94 x 10-3 4.39 x 10-4 1.87 x 10-5 2.75 x 10-2

Table 2: The maximum and average power needed by controls in terms of relative power ratio function tl.
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Figure 18: Energy of different basis modes Ai normalized by the sum -N Ai. The - lines show energy
of each mode (left axis), and ---- lines show energy sum of the first n modes (right axis) for: (a) mass
source, (b) x-direction body force, (c) y-direction body force, and (d) internal energy source controls.

and

?7e(t) = - Ce(x, y, t) dx, (36)

where the subscripts on q and 0 refer to mass source (p), x-direction body force (u), y-
direction body force (v), and internal energy source (e) controls. The maximum and average
values of I j are listed in table 2 for each control. We see that the peak 77 is 0.23, required by
an optimized internal-energy control, with corresponding average 0.028. From the viewpoint
of required power, the y-direction body-force control is the most efficient, with an average
Imvl = 1.87 x 10-5 and peak 17l = 1.90 x 10-4. Defining 77 based on the mean P yields the
same conclusions.

4.4.5 Control dimensionality

The 107 control parameters optimized are expected to be far more than is needed to rep-
resent an effective control. We can estimate the necessary dimensionality of the control
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Figure 19: Sound reduction by controls rebuilt with the M lowest order modes: mass source ...... , x-direction
body-force , y-direction body-force -.- -, and internal-energy - controls. Horizontal lines show

the full-mode limit. Jo is the uncontrolled 3.

by expanding it in empirical eigenfunctions. From a practical standpoint, the fewer modes
needed and the more simple their form, the more likely effective active controls will be
implementable. To obtain appropriate empirical eigenfunctions, we used the proper or-
thogonal decomposition, 29 also called the Karhunen-Lo~ve decomposition. Specifically, the
method of snapshots 30 was employed to provide a decomposition of the form

N

¢(x, t) = • ai(t) i(x), (37)
i=1

where f ujýbj dx = 6 ij and sums of the form F-]j aj(t)Oj(x) for Al < N are optimal in the
sense of representing the f ¢2 dx energy. Figure 18 shows the eigenfunction mode energies
of the optimized controls. Typically, 50% of the total control energy is in the first 10 modes,
and 75% is in the first 20. Perfect pairing of the lower modes is seen for the x-direction
body-force control, which we shall see in section 4.4.6 also appears to control the flow
somewhat differently than the other controls.

Since these eigenfunctions merely provide a spectral representation of the data, with no
direct link to control effectiveness, we must verify that a small number of these modes can
indeed be successful. Controls OM reconstructed with only the M lowest-order modes were
thus applied to the original flow. As shown in figure 19, the y-direction body-force control
reconstructed with the first mode only, which captures 23% of the overall f 02 dx energy,
reduces the cost 3 by 38% (2.1 dB). With the second mode also included, the y-direction
body-force control reduces the cost j by about 44% (2.5 dB). This cost reduction is better
as more modes are included. When 40 modes are included to rebuild the y-direction body-
force control, the cost is reduced by 64% (4.4 dB), which is close to its full-mode limit 69%
(5.1 dB). The noise reduction by internal energy source control rebuilt with 40 modes is
82% (7.4 dB), which is also close to its full-mode limit 92% (11 dB). Similar effectiveness
is observed for all other types of control.

Though a small number of modes can be effective, their form is nontrivial. Figure 20
shows the first 4 empirical eigenfunction modes for the y-direction body-force control. The
spatial scale appears to be smaller as the mode number increases. The corresponding time
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Figure 20: Spatial shape of the empirical eigenfunction basis for the control: (a) mode 1; (b) mode 2;
(c) mode 3: and (d) mode 4. The black shows values lower than -0.15, and the gray shows values higher
than 0.15.

coefficients ai (t) are reported elsewhere, 17 and have as expected higher frequency content
for higher modes. The spatial form of the control is also important. We attempted to
control the noise with an ad hoc pre-specified spatial shape,

O(x, t) = ý(t) exp(oolx - x012 ), (38)

with xO the center of C and 0ro = 0.1. In this case, the optimized 0(t) for the x-direction
body-force control reduces the noise by 44%, but the other types of control achieved at
most a 20% reduction.

4.4.6 Control induced changes to the flow

Having the original noisy flow and a perturbed version of it that is significantly quieter
provides an opportunity to study the changes that make the flow quiet. The 'before' and
'after' flows are compared in the following sub-sections.

Energetic structures. Several studies of single-frequency or harmonically excited free
shear flows 9',16,27 '31 suggest some connection between vortex pairing and sound radiation.
However, for our randomly excited flow, our control reduces the noise substantially without
suppressing pairing or substantially changing the vortex structure at all. In figure 21,
visualizations compare the flow before control (figure 21 a) and after control (figures 21 b
through e), showing little change in the vortical structure of the flow. We heuristically
arranged the visualizations of the controlled cases in order of increasing difference from the
uncontrolled case. The y-direction body-force control causes almost no noticeable change:
figure 21 (b) is almost indistinguishable from the uncontrolled case in figure 21 (a). This is
also the case that demanded the least control energy. However, the internal-energy control
case in figure 21 (c), which required the most control energy, also appears almost unchanged,
but since the control in this case does not directly affect the vorticity, its influence might
be expected to be less apparent in this visualization. The mass-control case shown in
figure 21 (d) is noticeably different, but the same pairings seem to occur at approximately
the same locations. The x-direction body force in figure 21 (e) is the only case that appears
to have any fundamental difference. These randomly excited flows can be contrasted to the
highly organized harmonically excited flow in figure 21 (f).

To avoid any bias caused by only showing four closely spaced snapshots and to provide
a more complete picture of the vortex evolution, in figure 22 we show the entire history
of large structures as designated by the pressure fluctuations at y = 0. The convergence
of low-pressure structures, the black branches in the figure, are an indication of vortex
mergings. Again we see slight changes where vorticies merge and so on, but the changes
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Figure 21: Instantaneous vorticity field visualizations at times ta,/j. = 312.5, 331.0, 351.1, and 371.3, with
contour levels from -0.6AU/5L to 0.02AU/J,: (a) no control; (b) y-direction body-force control; (c) internal
energy source control; (d) mass control; (e) x-direction body-force control; and (f) the harmonically excited
case, which is indistinguishable before and after control.

caused by even the x-direction body force in this more complete picture do not indicate
any fundamental change, with most (though not all) of the low-pressure mergings occurring
near to the locations they appear in the uncontrolled case. All these observations bring us
to the conclusion that there is no fundamental relation between vortex pairing per se and
the part of the noise reduced by our controls in the present mixing layers.

Mean-flow and fluctuation statistics. Given the qualitative similarity of the flow be-
fore and after the control is applied, one should not be surprised that the mean flow and
turbulence statistics are also nearly unchanged. Figure 23 (a) shows that momentum thick-
ness, defined by

ym JYb p(u - Ua)(Ub - u) dy, (39)5m p .. pAU2

is nearly linear in x and only slightly changed by any of the controls for all four cases,
though they all suppress spreading slightly around x = 60J". In (39), Ua and Ub are the
x-velocity at Ya and Yb and results were, of course, insensitive to the Ya and Yb.
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Figure 22: Pressure evolution at y = 0: (a) no control; (b) y-direction body-force control; (c) internal energy
source control: (d) mass control; (e) x-direction body-force control; and the (f) harmonically excited case.
Black is (p - p,¢) < 0; white is (p - pý) > 0.

Second-order statistics of the flow fluctuations are also nearly unchanged. With Ek defined
in (32). the y-integrated mean fluctuation kinetic energy normalized by the local mean
momentum thickness (39), F806•

Et (X) f 18011 Ek dy

) m(X) (40)

is plotted in figure 23 (b). This quantity reaches its maximum near x = 256, and remains
constant downstream. The control was applied from x = 6, to x = 765, where the turbu-
lence intensity is about 70% of its fully developed level, though the mixing layer is already
spreading linearly at this point and at the same rate as for large x. Thus, the control was
optimized and applied in a region where the unsteady flow fluctuations have amplitudes
close to their nonlinearly saturated condition. Moving C further downstream to where the
fluctuations are somewhat more intense and increasing its size in proportion to the local
momentum thickness showed similar success. The small effect of the control on the flow is
clear in that the turbulence kinetic energy has not been changed much by the controls. The
noise control is not by a suppression of the unsteady fluctuations.

Evolution of the energetic flow structures. Based on these results, it is clear that
subtle aspects of the manner in which the fluctuation energy is arranged in the flow must
be responsible for the noise reduction we observe. Assuming for discussion the simplest
description of sound source and propagation discussed in section 4.1, it is potentially subtle
aspects of their evolution as they advect downstream that puts energy into components
with supersonic phase velocity in x, which can then radiate to the far field in y. The
specific interactions that disrupt smooth advection in x are, however, difficult to quantify.
Interactions with a short length scale in x, or similarly on a short time scale, will broaden
the corresponding Fourier transforms in k and w and thus potentially increase energy in
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Figure 23: (a) Momentum thickness (39) of the mean flow (normalized by Jm0, the initial momentum
thickness at x = 0). (b) Fluctuation kinetic energy integrated in y (40) direction. Lines in both figures show
cases without control - ; and with mass ....... source control, x-direction body force . , y-direction
body force ---- , and internal energy source ... controls.

components that can radiate. However, analysis of direct numerical simulation data suggests
that all Fourier modes participate in the interaction. 32

Here we seek a means of assessing how smoothly the flow's energy advects downstream.
For convecting structures in a quiet streamwise homogeneous flow, we would expect to find
that the flow's fluctuations would be representable by Fourier modes with only subsonic (or
mostly subsonic) phase velocities. A way for them to be quiet would be for them to advect
nearly unchanged, which would give them a form such as a,(t) cos kx + a2(t) sin kx, with
al (t) and a2 (t) tracing circles in their phase plane. In the present streamwise inhomogeneous
case, Fourier transforms are clumsy.3 Though they do provide a definitive partitioning of the
energy into radiating and non-radiating components, their physical interpretation is clouded
by the fact that individual k--w modes may extend beyond the length of the physical flow.
Therefore, we employ empirical eigenfunctions in the inhomogeneous-flow x direction to
assess the advection of energy. The proper orthogonal decomposition is again used here to
provide empirical basis functions as it has been used in numerical and experimental efforts
in designating flow structures in jets.33-35 We define the empirical eigenfunctions by a

kinetic energy norm

1q11 2 =/_ (uJ + v 2 ) dx, (41)

where Dp is the entire physical domain in our computation, and can then reconstruct the
flow by

N

q(x, t) = Z ai(t)4Oi(x). (42)
i= 1

Taking the harmonically excited mixing layer as an example, we see that the kinetic energy
of the two most energetic modes is nearly the same (figure 24 a), the corresponding modes
fit together as sines and cosines (figure 24 b), and their time coefficients trace circular
trajectories in their phase plane (figure 24 c). This is the type of behavior we anticipated
for this quiet flow. Remarkably, we can observe a switch to this type of underlying behavior
with the application of our control even in the randomly excited flow.
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Figure 24: The empirical eigenmodes of the harmonically excited mixing layer: (a) relative mode energy
as in figure 18; (b) the pv component of modes 1 and 2 with - showing positive and ---- showing
negative contours; and (c) the phase plane of the coefficients of modes 1 and 2.
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Figure 25: Relative energy of represented by the lowest-order empirical eigenfunctions before 3 and after

, control: (a) y-direction body-force and (b) x-direction body-force controls.

We focus the y-direction body-force control case for discussion, but the results are general.
Figure 25 (a) shows the relative energy represented by each eigenfunction before and after
the y-direction body-force control is applied. While they are similar before and after, it is
noteworthy that mode energy levels come more closely in pairs up through mode eight. The
eigenfunctions also pair up. Figure 26 shows the y-momentum components of the vector-
valued eigenmodes. After control, they come more closely in out-of-phase pairs, like sines
and cosines. Further, and perhaps more importantly, their time-dependent coefficients now
give their net behavior a smoother downstream traveling character. Figure 27 shows the
coefficients al(t) and a2(t) of the first two modes before and after the control is applied.
The x-momentum components of the eigenmodes show similar behavior.

The cases using mass control and internal energy control show very similar behavior to that
discussed above for the y-direction body force control. However, for the x-direction body-
force control, the energy of each mode is paired up differently (see figure 25 b). It seems to
couple the 5th and 6th eigenmodes of the flow. For the y-direction momentum components
of the modes (see figure 28 a and b), a coupling into sine- and cosine-like modes occurs for
modes 5 and 6. Correspondingly, the phase picture of the coefficients as(t) and a6 (t) also
shows more circular motion compared with the original flow (figures 28 c and d). We saw
in figure 15 that this control is more successful at higher frequencies than the y-body-force
control.
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Figure 26: The pv component of the four most energetic empirical eigenfunction modes before and after y-
direction body-force control with contours showing positive levels < 0.03 and ---- contours showing
negative levels > -0.03.
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Figure 27: Phase map of the coefficients of the first 2 empirical eigenfunctions (a) before and (b) after
y-direction body-force control.

4.5 Discussion and Conclusions

In summary, the adjoint-based optimal control framework that we formulated and imple-
mented was able to circumvent the complexity of the flow's interactions leading to noise
generation and significantly reduce it directly. It "chose" to do this by subtly changing the
evolution of the existing turbulence structures in the flow. Only slight changes in the loca-
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Figure 28: Plots (a) and (b) show the pv component of modes 5 and 6 before and after x-direction body-
force control with - contours showing positive levels < 0.03 and ---- contours showing negative levels
> -0.03. Also shown are the phase maps of the coefficients of the these modes before (c) and after (d)
x-direction body-force control.
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tions of pairing and other identifiable events were noted and the turbulence statistics were
nearly unchanged by the control. Since essentially the same vortex pairings were observed
before and after the application of the control, we conclude that it is not pairings per se
or any other clearly identifiable near-field flow mechanics that are responsible for making a
considerable fraction of the total noise.

The clearest picture of the changes to the flow came from decomposing it into empirical
eigenfunctions, which show that the controlled turbulence structures advect more uniformly
downstream. The eigenfunctions of the controlled flow come in sin-cos like pairs, with
coefficients that trace relatively circular trajectories in their respective phase planes. This
interpretation was reinforced by results for a harmonically (as opposed to randomly) excited
mixing layer. In this case the control was ineffective, but the flow was already acoustically
inefficient, radiating comparably to the controlled randomly excited cases. The empirical
eigenfunctions also shared key features with the randomly excited but controlled flow. They
came, as expected, in distinct sin-cos pairs whose coefficients traced near perfect circles in
their corresponding phase plane.

It has long been understood that the largest turbulent flow structures in inflectional free
shear flow bear considerable resemblance to the linear instability modes supported by the
same flow. This is especially true in two dimensional flow, which lacks the vortex stretching
mechanism for removing energy from these structures via the turbulence energy cascade.
Such similarity has inspired several efforts to model aspects of free-shear-flow noise using
wave-packet models for the noise sources. These have included attempts based on both
actual linear instability modes8 ,12 and relatively ad hoc wave packets, which match the
qualitative character of growing then decaying instability modes. 9 ,10 Collectively, these
have met with some success, often predicting aspects (e.g. functional forms) of observed
experimental results but typically are not complete, predicting for example erroneous angles
of silence. 8"12 A factor contributing to this difficulty is the remarkable sensitivity of sources
of this form to perturbations, which presumably occur due to nonlinearity in any nonlinearly
active free shear flow, making it louder. One can speculate that a free shear flow, at least
a relatively simple two-dimensional one, is in some sense near an acoustically less efficient
unperturbed wave-packet state. Based upon the results presented in section 4.4.6, such an
acoustically inefficient state has been found by our control. Supporting this view, the angles
of silence observed for narrow frequency bands (figure 15) are similar to those predicted by
some wave-packet-based models. Three-dimensional turbulent flows are also known to have
an underlying instability wave-like character, but it remains to be seen if they can be
perturbed into a quieter state as easily as the present two-dimensional flow.

Though we have optimized the control, no conclusions can be made about whether or not
this control is truly optimal and does not just represent a local minimum. It is possible that
a quieter flow might be achieved by starting from a different 0 point. A laminar flow would
be an obvious target state, but what specific control could achieve this in a free shear flow is
unclear when the slightest disturbance will once again seed instability growth and eventual
nonlinear development in the flow. In contrast, the optimized control we found appears to
be a stable local minimum. Regardless, laminarization is probably not a possibility for the
selected C because it does not extend entirely across the thickness of the mixing layers.

From a practical perspective, an attractive feature of the identified control is that it is a rela-
tively minor perturbation to the flow that does not change the fundamental hydrodynamics,
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though it remains unclear how one might find such a controller in practice. Unfortunately,
the control itself was also complex. defying any clear interpretation. Based on space-time
correlations, it was seen to advect in its region of support at the same speed as the lo-
cal flow structures. A decomposition into empirical eigenfunctions showed that controls
reconstructed with only one or two modes., which capture only 20 to 30% of the energy,
achieved 40 to 50% sound reduction. Optimizing only the time coefficient of a Gaussian-
pulse-shaped actuation reduced the noise up to 44%, but was only this successful for the
x-direction body-force control.

5 Three-dimensional Mixing Layer

The tools have been developed and demonstrated for application of optimal controls to study
the noise mechanisms of two-dimensional mixing layers. Using them to study the "real"
three-dimensional case is now important for two main reasons. First, while it is known
that the underlying structure of three-dimensional shear layers, which make up the near
nozzle region of a turbulent jet, are essentially two-dimensional, their dynamics are much
more chaotic. Streamwise correlation lengths are shorter, which will potentially inhibit the
effectiveness of the control.

Second, the radiated sound spectra of three-dimensional turbulent flows are much broader
banded than their two-dimensional counterparts. In engineering applications, the higher
frequencies they include are particularly important because they receive a large weighting
when accounting for human annoyance.

We expect the task of creating optimal noise reduction controls will be significantly more
difficult in three dimensions. This is due in part by the above mentioned characteristics of
the flow, and increased computational challenges. The automatic optimization process will
now have be used to its fullest capacity to make any control realizable.

5.1 Numerical Methods

For this three-dimensional mixing layer, the notation for the governing flow equations in
section 4.2.2 is the same with the addition of the added terms in .'(q) due to the third
dimension (see Appendix A). The specific F vectors found in table 1 are also trivially
changed. As for the control formulations, sensitivity, and adjoint formulations found in
sections 4.3.1, 4.3.2,and 4.3.3, the method does not deviate and the adjoint equations in
three dimensions can be found in Appendix C.

5.1.1 Flow parameters and domain

The three-dimensional mixing layer simulated is shown in figure 29. The velocity difference
across the mixing layer is again AU and the inflow momentum thickness is defined exactly
as in equation 2. The mach numbers of the free streams are M1 = 0.9 and M 2 = 0.0
based on the ambient sound speed a... The flow was nondimensionalized via a,, the inflow
momentum thickness J•, and the ambient density p.. The density and viscosity were the
same in both streams and zero bulk viscosity was assumed. The Reynolds number was 200
based on this nondimensionalization and the Prandtl number was 0.7.

The physical domain of the simulation extended to 75J, in the streamwise direction (x), to
12.8J, in the spanwise (z), and from -80J, to 126, in the cross-stream (y). The control
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Figure 29: (a) Dilatation and vorticoty magnitude fields for the three-dimensional mixing layer. (b) Isosur-
faces of vorticity (top) and vorticitv slices corresponding to various x locations (bottom).

region Cextended fromxz- [0, 7], y -- [-4, 4], and z = [0,1i2.8] and had ameshof 39 x53 x48
in those respective directions. The target region (now an x-z plane) was located at y Q -40

and was the same in the streamwise and spanwise directions as the physical domain. It had
a mesh of 442 x 48 points. For comparison of the effectiveness of the control, the simulation
also tabulated values of the cost function on a plane located at y --- 75.

5.1.2 Spatial discretization and time advancement

Grid stretching was used in both the streamwise and cross-stream directions to increase
resolution in the shear layer. The grid was uniform in the spanwise direction, which was
periodic.

The stretching of the grid was obtained by mapping the computational mesh on to a uniform
mesh via a function x = g(s). Using a mapping such as this, derivatives of a function f(x)
are related to derivatives on the uniform grid by:

Sf 1 2fg"Of
(f _ 0 and o _ (43)

-X g'& tS x2  g'l2 OS2  g13 OS

where primes indicate differentiation by the parameter s.

In practice, it is simpler to specify the form of g'(s) since it is directly proportional to the
grid spacing. For all simulations, the form was specified using combinations of hyperbolic
tangent functions:

5.. (i +tanh[o 2s])] (44)
reso)ut- gon L 2h(1 sTs t(1± -- 1)]) w was

peridic

The constant ig was set such that g(1) = Lmn and so the uniform grid extends from s = 0
to s = 1. Integration and differentiation with respect to s yield g and g", respectively,
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Spatial Domain Parameters Grid Stretching Quantities
Nx,y,z Lmax a1 a2 -1 0"2 Dmax Dmin Max Stretch %

x 512 125 50 9 60 50 x 4.315 0.152 3.1%

y 400 125 8.5 10 12 3.7 y 0.858 0.175 18.7%
z 48 12.8 - - - - z 0.267 0.267 -

Table 3: Parameters used in Eqs. 44 & 45 for the discretization and grid stretching in the simulation.

which allow for derivative calculations using Eq. 43. The grid in the spanwise direction was
divided into N, evenly spaced intervals with spacing

D~z - Lmax (45)

where N, is the number of grid points in the z direction.

The quantities used for the parameters Lmax, Ia1, a 2, al , and O2 are shown in Table 3. Also
shown are the maximum and minimum grid spacings, Dmax and Dmin and amount of grid
stretching for the parameters chosen. The maximum stretching and spacing occurred on
the computational domain boundary. The minima were found in the shear layer.

The time advancement scheme for the three-dimensional flow and adjoint simulation used
was the High-Accuracy Large-Step Explicit Runge-Kutta (HALE-RK) developed with prob-
lems in computational aeroacoustics in mind.36 The HALE-RK7 (seven step) scheme was
used for this simulation since the CFL stability limit was doubled and the CFL accu-
racy limit increased by 60% over the traditional Runge-Kutta (four step) fourth-order
scheme. This allowed for the time step of the simulation to be more than doubled to
At = 0.1253w/am (where it would be limited to 0.063w/am¢ before) with no losses in accu-
racy or stability. Furthermore, with this larger time step, the optimization time horizon
could be doubled at less cost, giving the control greater authority to make noise reducing
changes to the flow.

5.1.3 Differencing schemes

The methods of calculating derivatives used here were chosen to reduce the number of
mesh points as much as possible to lessen computational constraints. The cost associated
with greater accuracy in differencing schemes, despite requiring larger stencils and more
parallel communication, was acceptable since higher-accuracy schemes required less points
per wavelength to resolve wavenumbers characteristic in the flow. Both explicit and implicit
schemes which traded formal accuracy order for enhanced dispersion qualities were used.

An implicit "spectral-like pentadiagonal" differencing scheme 2' was used in the cross-stream
direction. This scheme enhanceds resolution compared to the eighth- and tenth-order
schemes that share the same differencing stencil with a formal fourth-order truncation er-
ror. The coefficients are formed by ensuring exactness of the modified wavenumber at three
anchor points, k = [2.0, 2.3, 2.4] such that k'(k) = k at those points. These constraints
sacrifice the formal order of the scheme in return for lessened dispersion error. The left
of figure 30 shows the modified wavenumber (k'(kh), where h is the grid spacing) for this
scheme. Also shown are the tenth-order compact finite difference scheme given by Lele2l

and the sixth-order scheme developed by Lui and Lele3t for comparison.
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An error metric denoting the deviation of the scheme from the exact wavenumber is shown
on the right in figure 30. The relative error as a function of wavenumber, E(k) is defined as:

e - k'(k) - k
k (46)

In the streamwise direction a variant of the explicit dispersion-relation-preserving or DRP 22

scheme was used. In the original fourth-order scheme, the coefficients of a seven-point
stencil were optimized in order to minimize e(k) on the interval kh = [0, 7r/2]. The scheme
developed for this simulation used a nine-point stencil and minimized the error on kh =
[0, 77r/12]. The resulting scheme is sixth-order accurate and is shown along with the original
in figure 30. An explicit scheme was chosen in the streamwise direction to facilitate domain
decomposition for parallel computing in that direction.

5.1.4 Inflow turbulence procedure

For our previous two-dimensional mixing layer simulations, we specified an ad hoc sum of
randomly phased modes (see section 4.2.4). To properly challenge the controller and provide
more realistic turbulent inflow conditions we have created a means to "feed" developed
turbulence from an auxiliary simulation into the mixing layer simulation. This is shown
schematically in figure 31. Subsequent x-z planes from the "frozen" streamwise periodic
auxiliary simulation of a temporally developing mixing layer are used as the target state of
a buffer zone at the inflow. In this buffer zone, the flow equations (equation 3) are modified
to be

A/(q) + oi(x)(q - qtaget) = 0. (47)

The extra term in this expression "damps" the solution toward the target state, in this case
the appropriate inflow conditions. The feeding coefficient, a, determines the domain over
which the target state is forced and has the form

a(x)= (tanh i (X - Xl -xr - Xb)1 - tanh 1 (X-- Xl + Xb)] (48)

where x1 and x, form the left and right edges of the feeding domain and Of and Xb are
parameters which smooth the function.

New data is fed from the auxiliary simulation at the estimated convection speed U, =

(U( + U2 )/2, which is the mean speed of the two streams. The x-domain of the auxiliary
simulation is periodic, so the inflow data will repeat eventually, but the period of this data
is long enough to allow two flow through times before a repeat. This is longer than the
time required to properly evaluate the controls and their effect on the noise mechanism in
the three-dimensional mixing layer.

5.1.5 Boundary treatments

A buffer region was used in the simulation to mimic a radiation condition in a manner
similar to that proposed by Freund 23 (see equation 5). The dampening coefficient ý was
varied from 0 to 0.4 in the streamwise direction and from 0 to 0.6 in the cross-stream

direction. The buffer region extended 15Jw to the left of the physical domain and 306, to
the right. The cross-stream buffer and 12J, beyond the top and bottom of the physical
domain. The spanwise direction was periodic and therefore required no boundary condition.
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Figure 31: View of the auxiliary simulation data (shown here as vorticity magnitude) as it is fed into the
mixing layer. The buffer region extends from -15 < x < -5.

During the course of testing the code for the adjoint simulation, it was found that large
amplitude disturbances were excited as they interacted in the shear layer. Since the equa-
tions are solved backwards in time, these disturbances traveled upstream and into the left
buffer region, which is weakly dampened due to the fact that the flow solution travels in
the opposite direction. Therefore, the coefficient ý was quadrupled in the area upstream of
the control region C to dampen the waves before they reached the computational boundary.

As mentioned in section 4.2.3, standard one-dimensional characteristic boundary conditions
were used for both the adjoint and flow fields to absorb outgoing perturbations.

5.1.6 Simulation procedure

The flow was started from an initial velocity profile of

u(x,y) = 1 (tanh [20.5y] ±i) (49)

with p = 1, p = 1/-y and zero cross-stream and spanwise velocities. The inflow turbulence
was fed and the flow was simulated for 3700 time steps (449J,/a•). This allowed for all
transients to dissappear before accumulating statistics or applying the control. The flow
also was at a point where a statistically stationary time series could now be computed for
determining the quality of the turbulence.

The control time horizon was 5000 time steps, or a time of 6259,/a,. This allowed for the
following process to occur five times: the effect of control ¢ is advected from the region C at
speed U, = 0.45 to a mid-point in the shear layer and subsequently generates a sound event
which travels at speed a, = 1 to the target plane Q. This time ensures that the control
not only reaches the target plane, but has ample opportunity to reduce noise there. The
number of control parameters for this optimization procedure is 500 million.

5.1.7 Three-dimensional adjoint and control considerations

For this simulation, several features of the numerical implementation needed to be changed
from the previous two-dimensional framework due to (1) the inclusion of the third dimension,
and (2) the greater computational burden associated with this addition.
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First, the 6-function distribution shown in equation 26 must now approximate the smearing
on to an x-z plane. This was achieved with the same Gaussian-shaped function listed in
section 4.3.4 for the cross-stream direction. A combination of hyperbolic tangents functions
similar to equation 48 smeared the streamwise direction between its ends at x = [0, 75]5J.
The spanwise direction was periodic, so no smearing was required.

Since the entire flow field needed to be saved to solve the adjoint equations, every other point
in the x- and y-directions was stored. A FFT was taken in the z-direction and half of the
lowest (and most energetic) Fourier coefficients were retained. This data was written to disk
every ten time steps throughout the simulation. The data was again interpolated linearly
in time and used second-order Lagrange interpolation in space for the x- and y-directions.
An inverse FFT using the stored coefficients finished recreating the flow field.

This process amounted to a large computational savings in I/O operations and disk space.
The two-dimensional simulation was able to save the entire flow field within the memory.
However, the problem size of this simulation was too large to reside in memory and therefore
had to be distributed across multiple nodes when the data was written to disk. This data
sharing was used for the flow field coefficients and for the conjugate gradient portion of
the code. Several gradients and controls needed to be stored since the control algorithm
produced gradient directions that were conjugate to all previous gradients.

The control update process exhibited similar behavior to the previous simulation. The
number of flow and adjoint solutions computed per line minimization was comparable, but
slightly higher, due to differing local shapes of J(0).

5.2 Basic flow results

5.2.1 Visualization

Figure 29(b) in addition to figure 32 show the three-dimensional structure of the flow and
its fundamental differences from the two-dimensional simulation. The vortex stretching
mechanism creates a much more chaotic flow even at a lower Reynolds number. The left of
figure 32 shows a visualization as a x-y slice taken through the mid-plane of the spanwise
direction of the simulation of the mixing layer. Contours of the magnitude of vorticity in
the shear layer and contours of the dilatation are shown. The dilatation is proportional to
the time derivative of the density, via nl(q) in (55) far from the mixing layer. Here the
speed of sound is constant and the density is proportional to the pressure though p = a2p.

Figure 32(b) shows the much broader far-field sound spectrum of the mixing layer. Pressure
data was taken at midpoints in the spanwise and streamwise directions and at y = -75 for
all 5000 time steps in the simulation. A windowing scheme 3 modified the time series data
due to its finite nature to confine spurious spectral aliasing to very low wavenumbers.

A slice at the midpoint in the spanwise direction of the adjoint pressure field is shown in
figure 33. As before, the adjoint pressure begins as a sound wave forced by the flow data
on the Q-plane and travels upstream to excite disturbances in the shear layer.

5.2.2 Mean and turbulence statistics

Data from the simulation was output every 10 time steps (1.256•/a•) and used to compute
statistical turbulence quantities. The mean, Reynolds stresses, and similarity features of
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Figure 32: Visualization of the three-dimensional mixing layer vorticity and dilatation (left) and the far-field
sound spectrum (right).

the flow were calculated using 501 data files. This is not a large sample and the statistical
quantities reported may not be fully converged. However, the results presented suggest that

the turbulence is rich and capable of being realistic.

The mean quantities of the flow were calculated using Favre averaging. This is a common
method for compressible turbulent flows where significant density fluctuation occur. Using
the standard Reynolds averaging common in incompressible flow leads to a term in the

continuity equation known as the turbulent mass flux which does not have a counterpart in

the laminar equations. Therefore, under Reynolds averaging the Navier-Stokes equations
require closure assumptions. Favre averaging uses a weighted density and a Favre-averaged

quantity is defined by .(50)

and the Favre decomposition of a flow variable is

f =jf"--f. (51)

The left of figure 34 shows the total mean kinetic energy of the mixing layer which is

K(, y) =p-u"n" + -v"v" + -w"w". (52)

The figure shows that the mixing layer reaches its maximum mean kinetic energy near
x = 40. The straight diverging contours suggest that the layer is growing linearly in the

streamwise direction.

Figure 34 shows the self-similarity characteristics of the simulated mixing layer. The mean
kinetic energy suggests that similarity occurs near x = 40. Shown with lines in figure 34(b)

is the scaled -5u'u" component of the Reynolds stress tensor (Rn1 ) and with symbols, the
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Figure 33: Snapshots of one plane of the adjoint pressure fields being forced in the target region 0 corre-
sponding to the y - z plane at y = -75. Time is progressing backwards from left to right.

Ou"v" component (R1 2 ). The Reynolds stresses are scaled by ý, a parameter scaled by
the mixing layer thickness. The R11 and R 12 components are shown at three downstream
locations: x = 55, x = 60, and at the end of the physical domain at x = 75. To be perfectly
similar, the profiles should collapse. Due to the small sample size, the peaks do not perfectly
coincide, but it is apparent that the mixing layer reaches a self-similar state midway through
its physical domain. The values for the scaled stresses and spreading parameters match well
to comparable incompressible and compressible mixing layer simulations and experiments.

5.3 Preliminary optimization results

Having verified that the mixing layer was indeed a realistic turbulent flow, the internal
energy control formulation was implemented. Since the flow is expected to be harder to
control, the energy was chosen over the mass and body force controls solely due to its
previous successes.

As of the writing of this report, the three-dimensional optimization has progressed to the
fifth iteration. The computation was performed on an IBM P655 Power4+ system on 64
processors and required approximately 75 000 processor-hours and 1.2TB of disk space.

Initial simulations placed the target plane Q at y = -75. Since the target region was far
away, the control had to travel farther to make changes on the target line. So, the Q-plane
was moved to y = -40 (as shown in figure 29), which was found to be in the far-field,
away from any significant nonlinear and viscous effects. This plane was determined by
subtracting the contribution of the linearized Euler equations from the full Navier-Stokes
solutions. A residual was calculated via

IZ(x, y) = j [fi(q) - £j(q)]2 dtdz, (53)

where K" is the Navier-Stokes operator and L is the linearized Euler operator. Figure 35
shows the residual plotted at several downstream locations. The residual drops steeply away
from the shear region as expected. The line in figure 35 shows a decay to the fourth power.
This represents the quadratic quadrupole decay (since the residual was a squared quantity,
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Figure 34: (a) Contours of the total mean kinetic energy. The contour space is 2.5 x 10- 5 and the minimum
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the decay is doubled).

5.3.1 Cost reduction

Figure 35 shows the reduction of the cost function in equation 9 through the first five

global iterations. The total overall noise reduction on the Q-plane is 28%. As with the
two-dimensional simulation, this plot featured a different starting point of the control time
horizon. The starting point to was increased to account for the uncontrollable noise on Q
due to the acoustic travel time of ¢ from C. This decreased the cost function by roughly
35% of its original value.

Figure 36 shows this effect. The value of j is shown with no control applied and after the
fifth iteration. It is evident that there is no distinguishable difference between the values
of the cost function until taoo/J, = 600 or for about one-fourth of the simulation's time
series. Even at this point, it is likely that the control is not fully able to reduce noise on the

target plane due to its width and the fact that changes due to the control may be advected
by structures traveling at U, and then emitted to Q, a process which takes longer to occur.

Figure 37 compares x-y slices of the dilatation fields of the mixing layer far-field at tam/j- =

831.38 with no control and with the control of the fifth iteration. Considering this qualitative
view with the cost function in figure 36, it appears that the control is partially successful
at reducing noise in the half-plane closer to C in the streamwise sense. Many of the large
sound events found in J correspond to sound waves near the edges of the domain, that may
not be as controllable as those more directly underneath where the control is applied.

The comparison of the two views of the shear layer also appears to agree with the previous

simulation's results. The large structures appear to be changed, but not to a large degree.
Noticable differences exist, but the sound field instead proves to be changed more radically.
Although the noise has only been reduced 28% over the whole horizon, the higher amplitude
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events in the dilatation field are diminished.

5.4 Conclusions

It is partially evident, up to this point, that the controllability of the three-dimensional
mixing layer provides somewhat more of a challenge than the previous simulation. If not

merely in terms of computation, but also the ability to control the noise generation processes

of an overall more chaotic flow regime. Only the internal energy control formulation has

been implemented, and has only been allowed to optimize over a fraction of the iterations
as the two-dimensional simulation. However, the cost function behavior shown in figure 35

is leveling-off as was observed in figure 9. Further iterations will determine if the three-

dimensional optimization will follow the same behavior. The ability of mass or body-force

controls to be any more successful than the current is yet to be seen.
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9 Transitions

This effort is coordinated with ongoing efforts at United Technologies Research Center
(UTRC) to model, simulate, predict, and reduce jet noise for Pratt & Whitney engines.
Their experimental results showing the importance of the near-nozzle region at high Reynolds
number motivated our focus on the near-nozzle region. Freund makes regular visits to
UTRC to discuss jet noise and adjoint-based control of various types of turbulent jets. Our
principal contact at UTRC is Satish Narayanan. The simulation databases are being made
available to complement Prof. Samimy's efforts at OSU to control noise.
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A Compressible viscous flow equations

The compressible viscous flow equations were written in an operator form as

J.(q) = [nj(q) n22(q) n3(q) n4(q) n5(q)]T = 0, (54)

with
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i(q) =A + aPU-

2,3,4(q) pui puiuj Op ijna34q) t- Oxj axi axj (55)

-e a2 aa2
n 5 (q) =-+ [j[U(e + Pr(- 1) [ (P)] - (TijUj)

where stresses 1[ut u _2 8uk (56)
Tij = Re L ax- ) + 0i ) 3 k I

are for a Newtonian fluid with zero bulk viscosity, and the total energy e for our normal-
ization is

e +1 pujuj, (57)

including both internal and kinetic energy. Here, all variables were non-dimensionalized
with p,,, a,, 6,, and cp, which gives a dimensionless gas constant R = (-y - 1)/1y, where y
is the ratio of the specific heats, and Re = poa,,/,p. For the two-dimensional equations,
n4(q), U3, and ' are identically zero.

B Two-dimensional Adjoint equations

Following the systematic procedure in section 4.3.3, the adjoint of the linearized perturbed
two-dimensional compressible viscous flow equations is

=q (Ca A*-19 B*a + D* q*, (58)
Nq at ax ay

where
u u2  uv lu(u2  v2)

p 2pu pv I +p(3u - v2)A* -- 2 5auM y(59)
0 0 Pu P U ,-

2- 1 2 _,u 2
V UV V V(U 15 V Ov

B* 0 pv 0 PUV- 3 -5  (60)
pu 2pv ^ +p(u + 3v2 ) + +- (6

-fl u 3v x(2 v)
10 p 0Y- Pu

0 - 1 U (2+v2

c*= p o I (61)0 p p v P

-00 0 1

and 0 0 0 P a2 a2
[0 4r a2 0 P 2 ( 17 +••- )

I a  
2 a2 4u 9 .a2 v a 2

D*=a 2 g--by •-- 2 92 2a'- ~z +¥O (62)
Re 0 a2 0 4 a 4vax-- a a - (62

-o 0 0 Tr - ( =a a 7)
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These matrices all depend on the flow solutions, p, u, v, and p. In the numerical solution,
C* was inverted every Runge-Kutta sub-step. The adjoint has a similar characteristics
structure as the flow equations, which permits a one-dimensional characteristic boundary
condition to be developed in a similar fashion.17

C Three-dimensional Adjoint equations

Following the systematic procedure in section 4.3.3, the adjoint of the linearized perturbed
three-dimensional compressible viscous flow equations is

K*(q)q*= C**a A*( a3B* ) E* a

U V Wx 1 (U 2 + V2 + W 2)-

C* 0 0 P 0 PV
0 0 P pw

o 0 0 0 ._

"-y-1

"U U2 UV UW lu(U2 +v2 +w
2
)

A o= 0 0 0 puv 5u3Re ay
5 9upu 0 Upuw - "Re- 67z

0 0 pv pvw-5 av

0 1 0 ,•v

"1y-1

0 pw 0 0 _ 5 5 w
P23Re5 Twx

0 0 pw 0pvw - Me N

0 0 0 1DW =W 1W 1 2 1W (U +22+ 2
0 W0 0 PU- (52 '9

Me O

3* 00 0 P48 0 PV R y ( au Q0o2 ~ 0p1u p 2p D2 +3 R x2 4wY)2 D _ 2 ,v

-- 0 2 a2 a2

+ g

These equations were solved in a similar manner as that mentioned in Appendix B.
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